
’

Jlint manual
Java program checker

Konstantin Knizhnik, Cyrille Artho

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this library;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307, USA.

i

Table of Contents

jlint . 1

1 Introduction . 2

2 Bugs detected by AntiC . 3
2.1 Bugs in tokens . 3

2.1.1 Octal digit expected . 3
2.1.2 May be more than three octal digits are specified . . 3
2.1.3 May be more than four hex digits are 3
2.1.4 May be incorrect escape sequence 3
2.1.5 Trigraph sequence inside string 3
2.1.6 Multi-byte character constants are not portable . . . 3
2.1.7 May be ’l’ is used instead of ’1’ at the end of integer

constant. 4
2.2 Operator priorities . 4

2.2.1 May be wrong assumption about operators
precedence . 4

2.2.2 May be wrong assumption about logical operators
precedence . 4

2.2.3 May be wrong assumption about shift operator
priority . 4

2.2.4 May be ’=’ used instead of ’==’ 4
2.2.5 May be skipped parentheses around assign operator

. 4
2.2.6 May be wrong assumption about bit operation

priority . 5
2.3 Statement body . 5

2.3.1 May be wrong assumption about loop body 5
2.3.2 May be wrong assumption about IF body 5
2.3.3 May be wrong assumption about ELSE branch

association . 5
2.3.4 Suspicious SWITCH without body 6
2.3.5 Suspicious CASE/DEFAULT . 6
2.3.6 Possible miss of BREAK before CASE/DEFAULT

. 6

ii

3 Bugs detected by Jlint . 8
3.1 Synchronization . 8

3.1.1 Loop id: invocation of synchronized method name
can cause deadlock . 12

3.1.2 Loop LoopId/PathId: invocation of method name
forms the loop in class dependency graph 12

3.1.3 Lock a is requested while holding lock b, with other
thread holding a and requesting lock b 13

3.1.4 Method wait() can be invoked with monitor of other
object locked . 13

3.1.5 Call sequence to method name can cause deadlock in
wait() . 14

3.1.6 Synchronized method name is overridden by
non-synchronized method of derived class name 14

3.1.7 Method name can be called from different threads
and is not synchronized . 14

3.1.8 Field name of class . 14
3.1.9 Method name implementing ’Runnable’ interface is

not synchronized . 15
3.1.10 Value of lock name is changed outside

synchronization or constructor . 15
3.1.11 Value of lock name is changed while (potentially)

owning it . 15
3.1.12 Method name.wait() is called without

synchronizing on name . 16
3.2 Inheritance . 16

3.2.1 Method name is not overridden by method with the
same name of derived class name 16

3.2.2 Component name in class name shadows one in base
class name . 16

3.2.3 Local variable name shadows component of class
name . 17

3.2.4 Method finalize() doesn’t call super.finalize()
. 17

3.3 Data flow . 17
3.3.1 Method name can be invoked with NULL as number

parameter and this parameter is used without check for
null . 19

3.3.2 Value of referenced variable name may be NULL
. 19

3.3.3 NULL reference can be used . 20
3.3.4 Zero operand for operation . 20
3.3.5 Result of operation is always 0 20
3.3.6 Shift with count relation than integer 20
3.3.7 Shift count range [min,max] is out of domain 21
3.3.8 Range of expression value has no intersection with

target type domain . 21

iii

3.3.9 Data can be lost as a result of truncation to type
. 21

3.3.10 May be type cast is not correctly applied 22
3.3.11 Comparison always produces the same result . . . 22
3.3.12 Compared operands can be equal only when both of

them are 0 . 22
3.3.13 Reminder always equal to the first operand 22
3.3.14 Comparison of short with char 23
3.3.15 Compare strings as object references 23
3.3.16 Inequality comparison can be replaced with equality

comparison . 23
3.3.17 Switch case constant integer can’t be produced by

switch expression . 23

4 Command line options . 25
4.1 AntiC command line options . 25
4.2 Jlint command line options . 25
4.3 Jlint messages hierarchy . 26

5 How to build and use Jlint and AntiC. 27

6 Release notes . 28

jlint 1

jlint

This document described Jlint, a Java program checker that will check your Java code
and find bugs, inconsistencies and synchronization problems by doing data flow analysis
and building a lock graph.

Chapter 1: Introduction 2

1 Introduction

Jlint will check your Java code and find bugs, inconsistencies and synchronization prob-
lems by doing data flow analysis and building lock graph.

Jlint consists of two separate programs performing syntax and semantic verification. As
far as Java mostly inherits C/C++ syntax and so inherits most of the problems caused by C
syntax, the idea was to create common syntax verifier for all C-family languages: C, C++,
Objective C and Java. This program was named AntiC , because it fixes problems with
C grammar, which can cause dangerous programmer’s bugs, undetected by compiler. By
using hand-written scanner and simple top-down parser, AntiC is able to detect such bugs
as suspicious use of operators priorities, absence of break in switch code, wrong assumption
about constructions bodies...

Semantic verifier Jlint extracts information from Java class files. As far as Java class
file has very well specified and simple format, it greatly simplifies Jlint in comparison with
source level verifiers, because development of Java grammar parser is not a simple task
(even through Java grammar is simpler and less ambiguous than C++ grammar). Also
dealing only with class files, protect Jlint from further Java extensions (format of virtual
byte instructions is more conservative). By using debugging information Jlint can associate
reported messages with Java sources.

Jlint performs local and global data flow analyses, calculating possible values of local
variables and catching redundant and suspicious calculations. By performing global method
invocation analysis, Jlint is able to detect invocation of method with possible "null" value
of formal parameter and using of this parameter in method without check for "null". Jlint
also builds lock dependency graph for classes dependencies and uses this graph to detect
situations, which can cause deadlock during multi-threaded program execution. Except
deadlocks, Jlint is able to detect possible race condition problem, when different threads
can concurrently access the same variables. Certainly Jlint can’t catch all synchronization
problems, but at least it can do something, which can save you a lot of time, because
synchronization bugs are the most dangerous bugs: non-deterministic, and not always re-
producible. Unfortunately Java compiler can’t help you with detecting synchronization
bugs, may be Jlint can...

Jlint uses smart approach to message reporting. All messages are grouped in categories,
and it is possible to enable or disable reporting messages of specific category as well as
concrete messages. Jlint can remember reported messages and do not report them once
again when you run Jlint second time. This feature is implemented by means of history
file. If you specify -history option, then before reporting a message, Jlint searches in this
file if such message was already reported in the past. If so, then no message is reported
and programmer will not have to spend time parsing the same messages several times. If
message was not found in history file, it is reported and appended to history file to eliminate
reporting of this message in future. Some messages refer to class/method name and are
position independent, while some messages are reported for specific statement in method’s
code. Messages of second type will not be repeatedly reported only if method’s source is
not changed.

Chapter 2: Bugs detected by AntiC 3

2 Bugs detected by AntiC

Input of AntiC should be valid C/C++ or Java program with no syntax errors. If there
are some syntax errors in the program, AntiC can detect some of them and produce error
message, but it doesn’t try to perform full syntax checking and can’t recover after some
errors. So in this chapter we discuss only the messages produced by AntiC for program
without syntax errors.

2.1 Bugs in tokens

2.1.1 Octal digit expected

Sequence of digits in string or character constant preceded by ’\\’ character contains
non-octal digit:

printf("\128");

2.1.2 May be more than three octal digits are specified

Sequence of digits in string or character constant preceded by ’\\’ character contains
more than three digits:

printf("\1234");

2.1.3 May be more than four hex digits are

specified for character constant
String constant contains escape sequence for Unicode character, followed by character,

which can be treated as hexadecimal digit:
System.out.println("\uABCDE:");

2.1.4 May be incorrect escape sequence

Non-standard escape sequence is used in character or string constant:
printf("\x");

2.1.5 Trigraph sequence inside string

Some C/C++ compilers still support trigraph sequences of ANSI C and replace the fol-
lowing sequences of characters ("??=", "??/", "??’", "??(", "??)", "??!", "??") with the
characters ("#", "\", "^", "[", "]", "|", "", "") respectively. This feature may cause
unexpected transformation of string constants:

char* p = "???=undefined";

2.1.6 Multi-byte character constants are not portable

Multi-byte character constants are possible in C, but makes program non-portable.
char ch = ’ab’;

Chapter 2: Bugs detected by AntiC 4

2.1.7 May be ’l’ is used instead of ’1’ at the end of integer
constant

It is difficult to distinct lower case letter ’l’ and digit ’1’. As far as letter ’l’ can be used
as long modifier at the end of integer constant, it can be mixed with digit. It is better to
use upper-case ’L’:

long l = 0x111111l;

2.2 Operator priorities

2.2.1 May be wrong assumption about operators precedence

Several operators with non-intuitive clear precedence are used without explicit grouping
by parentheses. Sometimes programmer’s assumption about operators priorities is not true,
and in any case enclosing such operations in parentheses can only increase readability of
program. Below is list of some suspicious combinations of operators:

x & y == z
x && y & z
x || y = z

2.2.2 May be wrong assumption about logical operators
precedence

Priority of logical AND operator is higher than priority of logical OR operator. So AND
expression will be evaluated before OR expression even if OR precedes AND:

x || y && z

2.2.3 May be wrong assumption about shift operator priority

Priority of shift is smaller than of arithmetic operators but less than of bit manipulation
operators. It can cause wrong assumption about operands grouping:

x>>y - 1
x >> y&7

2.2.4 May be ’=’ used instead of ’==’

Almost all C programmer did this bug, at least once in their life. It very easy to type
’=’ instead of ’==’ and not all C compilers can detect this situation. Moreover this bug is
inherited by Java: the only restriction is that types of operands should be boolean:

if (x = y)

2.2.5 May be skipped parentheses around assign operator

Assign operators have one of the smallest priorities. So if you want to test result of
assignment operation, you should enclose it in parentheses:

if (x>>=1 != 0)

Chapter 2: Bugs detected by AntiC 5

2.2.6 May be wrong assumption about bit operation priority

Bit manipulation operators have smaller priority than compare operators. If you, for ex-
ample, extracting bits using bit AND operator, do not forget to enclose it with parentheses,
otherwise result of the expression will be far from your expectation:

if (x == y & 1)

2.3 Statement body

Almost all C statements can contain as its sub-part either single statement or block of
statements (enclosed by braces). Unnoticed semicolon or wrong alignment can confuse pro-
grammer about real statement’s body. And compiler can’t produce any warnings, because
it deals with stream of tokens, without information about code alignment.

2.3.1 May be wrong assumption about loop body

This message is produced if loop body is not enclosed in braces and indentation of the
statement following the loop is bigger than of loop statement (i.e. it is shifted right):

while (x != 0)
x >>= 1;
n += 1;

return x;

2.3.2 May be wrong assumption about IF body

This message is produced if IF body is not enclosed in braces and indentation of the
statement following the IF construction is bigger than of IF statement itself (i.e. it is shifted
right) or IF body is empty statement (’;’):

if (x > y);

int tmp = x;
x = y;
y = tmp;

if (x != 0)
x = -x; sign = -1;

sqr = x*x;

2.3.3 May be wrong assumption about ELSE branch association

If there are no braces, then ELSE branch belongs to most inner IF. Sometimes program-
mers forget about it:

if (rc != 0)
if (perr) *perr = rc;

else return Ok;

Chapter 2: Bugs detected by AntiC 6

2.3.4 Suspicious SWITCH without body

Switch statement body is not a block. With great probability it signals about some error
in program:

switch(j)
case 1:

...
case 2:

switch(ch);

case ’a’:
case ’b’:
...

2.3.5 Suspicious CASE/DEFAULT

Case is found in block not belonging to switch operator. Situations, where such possi-
bility can be used are very rare:

switch (n & 3)
do

default:
*dst++ = 0;

case 3:
*dst++ = *drc++;

case 2:
*dst++ = *drc++;

case 1:
*dst++ = *drc++;

while ((n -= 4) > 0;

2.3.6 Possible miss of BREAK before CASE/DEFAULT

AntiC performs some kind of control flow analysis to detect situations, where control can
be passed from one case branch to another (if programmer forget about BREAK statement).
Sometimes it is necessary to merge several branches. AntiC doesn’t produce this message
in following cases:
1. Several cases point to the same statement:

case ’+’:
case ’-’:

sign = 1;
break;

2. Special nobreak macro is defined and used in switch statement:
#define nobreak
...
switch (cop)

Chapter 2: Bugs detected by AntiC 7

case sub:
sp[-1] = -sp[1];
nobreak;

case add:
sp[-2] += sp[-1];
break;
...

3. Comment containing words "break" or "fall" is placed before the case:
switch (x)
case do_some_extra_work:

...
// fall thru

case do_something:
...

In all other cases message is produced when control can be passed from one switch branch
to another:

switch (action)
case op_remove:

do_remove();
case op_insert:

do_insert();
case op_edit:

do_edit();

Chapter 3: Bugs detected by Jlint 8

3 Bugs detected by Jlint

There are three main groups of messages produced by Jlint: synchronization, inheritance
and data flow . These groups are distinguished by kind of analysis which is used to detect
problems, reported in this messages. Each group is in turn divided into several categories,
which contains one or more messages. Such scheme of message classification is used to
support fine-grained selection of reported messages.

Because only categories of message can be disabled, but not separate messages, a short
shell script is supplied that will suppress certain warnings that are less important. It should
be noted that it will ignore any race conditions for variables. This is because Jlint does not
have any notion of "shared reading", so it usually produces too many warnings about such
data races to be useful. For some projects, using Jlint’s output unfiltered can still be useful.

The shell script is as follows:
#!/bin/bash
find . -name ’*.class’ | xargs jlint -not_overridden \
-redundant -weak_cmp -bounds -zero_operand -string_cmp -shadow_local | \
grep -v ’Field .class\$’ | grep -v ’can be .*ed from different threads’ | \
grep -v ’Method.*Runnable.*synch’

It is probably more easier to run Jlint using those filters, with
cd <dir_with_class_files>
jlint.sh

3.1 Synchronization

Parallel execution of several threads of control requires some synchronization mechanism
to avoid access conflicts to shared data. Java approach to synchronization is based on using
object monitors, controlled by synchronized language construction. Monitor is always as-
sociated with object and prevents concurrent access to the object by using mutual exclusion
strategy. Java also supports facilities for waiting and notification of some condition.

Unfortunately, providing these synchronization primitives, Java compiler and virtual ma-
chine are not able to detect or prevent synchronization problems. Synchronization bugs are
the most difficult bugs, because of non-deterministic behaviour of multi-threaded program.
There are two main sources of synchronization problems: deadlocks and race conditions.

Situation in which one or more threads mutually lock each other is called deadlock.
Usually the reason of deadlock is inconsistent order of resource locking by different threads.
In Java case resources are object monitors and deadlock can be caused by some sequence of
method invocations. Let’s look at the following example of multi-threaded database server:

class DatabaseServer
public TransactionManager transMgr;
public ClassManager classMgr;
...

class TransactionManager
protected DatabaseServer server;

Chapter 3: Bugs detected by Jlint 9

public synchronized void commitTransaction(ObjectDesc[] t_objects)
...
for (int i = 0; i < t_objects.length; i++)

ClassDesc desc = server.classMgr.getClassInfo(t_objects[i]);
...

...

...

class ClassManager
protected DatabaseServer server;

public synchronized ClassDesc getClassInfo(ObjectDesc object)
...

public synchronized void addClass(ClassDesc desc)
ObjectDesc t_objects;
...
// Organized transaction to insert new class in database
server.transMgr.commit_transaction(t_objects);

;

If database server has one thread for each client and one client is committing transaction
while another client adds new class to database, then deadlock can arise. Consider the
following sequence:
1. Client A invokes method TransactionManager.commitTransaction(). While execu-

tion of this method monitor of TransactionManager object is locked.
2. Client B invokes method ClassManager.addClass() and locks monitor of ClassMan-

ager object.
3. Method TransactionManager.commitTransaction() tries to invoke method

ClassManager.getClassInfo() but has to wait because this object is locked by
another thread.

4. Method ClassManager.addClass() tries to invoke method TransactionManager.commitTransaction()
but has to wait because this object is locked by another thread.

So we have deadlock and database server is halted and can’t serve any client. The reason
of this deadlock is loop in locking graph. Let’s explain it less formally. We will construct
oriented graph G of monitor lock relations. As far as locked resource are objects, so vertexes
of this graph should be objects. But this analysis can’t be done statically, because set of
all object instances is not known at compile time. So the only kind of analysis, which Jlint
is able to perform, is analysis of inter-class dependencies. So the vertexes of graph G will
be classes. More precisely, each class C is represented by two vertexes: vertex C for class
itself and vertex C’ for metaclass. First kind of vertexes are used for dependencies caused
by instance methods invocation, and second - by static methods. We will add edge (A,B)
with mark "foo" to the graph if some synchronized method foo() of class B, can be invoked
directly or indirectly from some synchronized method of class A for object other than this.
For example for the following classes:

Chapter 3: Bugs detected by Jlint 10

class A
public synchronized void f1(B b)

b.g1();
f1();
f2();

public void f2(B b)
b.g2();

public static synchronized void f3()
B.g3();

class B
public static A ap;
public static B bp;
public synchronized void g1()

bp.g1();

public synchronized void g2()
ap.f1();

public static synchronized void g3()
g3();

will add the following edges:
g1

A --------> B, because of invocation of b.g1() from A.f1()

g2
A --------> B, because of following call sequence: A.f1 -> A.f2 -> B.g2

g3
A’ --------> B’, because of invocation of b.g3() from A.f3()

g1
B --------> B, loop edge because of recursive call for non-this object in B.g1().

f1
B --------> A, because of invocation of ap.f1() from B.g2()

Deadlock is possible only if there is loop in graph G. This condition is necessary, but not
enough (presence of loop in graph G doesn’t mean that program is not correct and deadlock
can happen during it’s execution). So using this criterion Jlint can produce messages about
deadlock probability in case where deadlock is not possible.

As far as task of finding all loops in the graph belongs to the NP class, no efficient
algorithm for reporting all such loops exists at this moment. To do it work best and fast,
Jlint uses restriction for number of loops, which pass through some graph vertex.

Chapter 3: Bugs detected by Jlint 11

There is another source of deadlock - execution of wait() method. This method unlocks
monitor of current object and waits until some other thread notify it. Both methods wait()
and notify() should be called with monitor locked. When thread is awaken from wait state,
it tries to re-establish monitor lock and only after it can continue execution. The problem
with wait() is that only one monitor is unlocked. If method executing wait() was invoked
from synchronized method of some other object O, monitor of this object O will not be
released by wait. If thread, which should notify sleeping thread, needs to invoke some
synchronized method of object O, we will have deadlock: one thread is sleeping and thread,
which can awoke it, waits until monitor will be unlocked. Jlint is able to detect situations
when wait() method is called and more than one monitors are locked.

But deadlock is not the only synchronization problem. Race condition or concurrent
access to the same data is more serious problem. Let’s look at the following class:

class Account
protected int balance;

public boolean get(int sum)
if (sum > balance)

balance -= sum;
return true;

return false;

What will happen if several threads are trying to get money from the same account? For
example account balance is $100. First thread tries to get $100 from the account - check is
ok. Then, before first thread can update account balance, second thread tries to perform
the same operation. Check is ok again! This situation is called race condition, because
result depends on "speed" of threads execution.

How can Jlint detect such situations? First of all Jlint builds closure of all methods,
which can be executed concurrently. The obvious candidates are synchronized methods and
method run of classes implemented Runnable protocol or inherited from Thread class. Then
all other methods, which can be invoked from these methods, are marked as concurrent.
This process repeats until no more method can be added to concurrent closure. Jlint
produces message about non-synchronized access only if all of the following conditions are
true:
1. Method accessing field is marked as concurrent.
2. Field is not declared as volatile or final.
3. Field doesn’t belong to this object of the method.
4. It is not a field of just created object, which is accessed through local variable.
5. Field can be accessed from methods of different classes.

It is necessary to explain last two items. When object is created and initialized, usually
only one thread can access this object through its local variables. So synchronization is not
needed in this case. The explanation of item 5 is that not all objects, which are accessed
by concurrent threads, need to be synchronized (and can’t be declared as synchronized in
some cases to avoid deadlocks). For example consider implementation of database set:

Chapter 3: Bugs detected by Jlint 12

class SetMember
public SetMember next;
public SetMember prev;

class SetOwner
protected SetMember first;
protected Setmember last;

public synchronized void add_first(SetMember mbr)
if (first == null)

first = last = mbr;
mbr.next = mbr.prev = null;

else
mbr.next = first;
mbr.prev = null;
first.prev = mbr;
first = mbr;

public synchronized void add_last(SetMember mbr) ...
public synchronized void remove(SetMember mbr) ...

;

In this example next and prev components of class SetMember can be accessed only
from synchronized methods of SetOwner class, so no access conflict is possible. Rule 5 was
included to avoid reporting of messages in situations like this.

Rules for detecting synchronization conflicts by Jlint are not finally defined, some of
them can be refused or replaced, new candidates can be added. The main idea is to detect
as much suspicious places as possible, while not producing confusing messages for correct
code.

3.1.1 Loop id: invocation of synchronized method name can cause
deadlock

Message category: deadlock
Message code: sync loop

Loop in class graph G See Section 3.1 [Synchronization], page 8 is detected. One such
message is produced for each edge of the loop. All loops are assigned unique identifier, so
it is possible to distinguish messages for edges of one loop from another.

3.1.2 Loop LoopId/PathId: invocation of method name forms the
loop in class dependency graph

Message category: deadlock
Message code: loop

Reported invocation is used in call sequence from synchronized method of class A to
synchronized method foo() of class B, so that edge (A,B) is in class graph G (See Sec-
tion 3.1 [Synchronization], page 8). If method foo() is invoked directly, then only previous

Chapter 3: Bugs detected by Jlint 13

message (sync loop) is reported. But if call sequence includes some other invocations (ex-
cept invocation of foo()), then this message is produced for each element of call sequence.
If several call paths exist for classes A, B and method foo(), then all of them (but not
more than specified by MaxShownPaths parameter) are printed. PathId identifier is used to
group messages for each path.

3.1.3 Lock a is requested while holding lock b, with other thread
holding a and requesting lock b

Message category: deadlock
Message code: lock

This is one of the extensions for version 2: checking synchronized blocks. If, for one
class, the locking scheme is such that it could lead to a cycle in the locking graph, this
message is shown.

public void foo()
synchronized (a)
synchronized (b)

public void bar()
synchronized (b)
synchronized (a)

In this example, a and b are two objects that are used as locks and are shared between
threads. If one thread call foo while another one calls bar simultaneously, a deadlock occurs.
Jlint does not check whether a and b are actually used by several threads. However, if this
were not the case, there is no point of using synchronizations on these variables.

3.1.4 Method wait() can be invoked with monitor of other object
locked

Message category: deadlock
Message code: wait

At the moment of wait() method invocations, more than one monitor objects are locked
by the thread. As far as wait unlocks only one monitor, it can be a reason of deadlock.
Successive messages of type wait path specify call sequence, which leads to this invocation.
Monitors can be locked by invocation of a synchronized method or by explicit synchronized
construction. Jlint handle both of the cases.

The extended Jlint now checks which locks are actually owned before issuing an error
message. This error message now spans two lines, with the second line saying which locks
are owned at that point. (Jlint will still count this as only one message when printing the
total message count.) This should greatly facilitate debugging.

Chapter 3: Bugs detected by Jlint 14

3.1.5 Call sequence to method name can cause deadlock in wait()

Message category: deadlock
Message code: wait path

By the sequence of such messages Jlint informs about possible invocation chain, which
locks at least two object monitors and is terminated by method calling wait(). As far as
wait() unlocks only one monitor and suspend thread, this can cause deadlock.

3.1.6 Synchronized method name is overridden by non-
synchronized method of derived class name

Message category: race condition
Message code: nosync

Method is declared as synchronized in base class, but is overridden in derived class by
non-synchronized method. It is not a bug, but suspicious place, because if base method is
declared as synchronized, then it is expected that this method can be called from concurrent
threads and access some critical data. Usually the same is true for derived method, so
disappearance of synchronized modifier looks suspiciously.

3.1.7 Method name can be called from different threads and is
not synchronized

Message category: race condition
Message code: concurrent call

Non-synchronized method is invoked from method marked as concurrent for object other
than this (for instance methods) or for class, which is not base class of caller method
class (for static methods). This message is reported only if invocation is not enclosed in
synchronized construction and this method also can be invoked from methods of other
classes.

3.1.8 Field name of class

name can be accessed from different threads and is not volatile

Message category: race condition
Message code: concurrent access

Field is accessed from method marked as concurrent. This message is produced only if:

1. Field belongs to the object other than this (for instance methods) or to classes which
are not base for class of static method.

2. Field is not component of object previously created by new and assigned to local vari-
able.

3. Field is not marked as volatile or final.

4. Field can be accessed from methods of different classes.

Chapter 3: Bugs detected by Jlint 15

3.1.9 Method name implementing ’Runnable’ interface is not
synchronized

Message category: race condition
Message code: run nosync

Method run() of class implementing Runnable interface is not declared as synchronized.
As far as different threads can be started for the same object implementing Runnable inter-
face, method run can be executed concurrently and is first candidate for synchronization.

3.1.10 Value of lock name is changed outside synchronization or
constructor

Message category: deadlock
Message code: loop assign

class Foo
Object a = new Object();

public void bar()
a = new Object();
synchronized (a)

The initialization of a (in the declaration, which will be moved into the constructor)
is OK; however, changing the value outside any synchronization will make a useless as a
locking variable. Therefore, Jlint will issue a warning for the assignment a = new Object();
in bar.

3.1.11 Value of lock name is changed while (potentially) owning it

Message category: deadlock
Message code: loop assign2

class Quux
Object a = new Object();

public void foo()
synchronized (a)

bar();

public void bar()
a = new Object();
/* do something */

In this example, the current thread still holds a lock on a when it re-initialized that
variable (in method bar). This means that if another thread tried to obtain a lock on
the new a, it can now proceed to do so, because the new value of a points to a different
instance, which makes a synchronization on a ineffective. Probably this was not expected

Chapter 3: Bugs detected by Jlint 16

by the programmer, and this could lead to a potential race condition. The solution to this
problem is to include another guard (in this case, synchronized(this)).

3.1.12 Method name.wait() is called without synchronizing on
name

Message category: wait nosync
Message code: wait nosync

Method wait() or notify() is invoked from method, which is not declared as synchro-
nized. It is not surely a bug, because monitor can be locked from another method, which
directly or indirectly invokes current method.

The improved Jlint (version 2) can also check wait calls to any object, and it will not
report an error as long as the lock on name was obtained within the method that is currently
being checked. This greatly reduces the amount of spurious warnings in that category.

3.2 Inheritance

This group contains messages, which are caused by problems with class inheritance: such
as mismatch of methods profiles, components shadowing... As far as Jlint deals with Java
class file and there is no information about line number in source file of class, field or method
definition, Jlint can’t show proper place in source file where class, field or method, which
cause the problem, is located. In case of methods, Jlint points to the line corresponds to
the first instruction of the method. And for classes and fields, Jlint always refers in message
to the first line in source file. Jlint assign successive number (starting from 1) for all such
message reported sequentially, because Emacs skips all messages, reported for the same line,
when you go to next message.

3.2.1 Method name is not overridden by method with the same
name of derived class name

Message category: not overridden
Message code: not overridden

Derived class contains the method with the same name as in base class, but profiles of
these methods do not match. More precisely: message is reported when for some method
of class A, exists method with the same name in derived class B, but there is no method
with the same name in class B, which is compatible with definition of the method in class
A (with the same number and types of parameters). Programmer writing this code may
erroneously expect that method in derived class overrides method in base class and that
virtual call of method of base class for object of derived class will cause execution method
of the derived class.

3.2.2 Component name in class name shadows one in base class
name

Message category: field redefined
Message code: field redefined

Chapter 3: Bugs detected by Jlint 17

Field in derived class has the same name as field of some of base classes. It can cause
some problems because this two fields points to different locations and methods of base
class will access one field, while methods of derived class (and classes derived from it) will
access another field. Sometimes it is what programmer expected, but in any case it will not
improve readability of program.

3.2.3 Local variable name shadows component of class name

Message category: shadow local
Message code: shadow local

Local variable of method shadows class component with the same name. As far as it
is common practice in constructors to use formal parameters with the same name as class
components, Jlint detects situations, when class field is explicitly accessed by using this
reference and doesn’t report this message in this case:

class A
public int a;
public void f(int a)

this.a = a; // no message

public int g(int a)
return a; // message "shadow_local" will be reported

3.2.4 Method finalize() doesn’t call super.finalize()

Message category: super finalize
Message code: super finalize

As it is mentioned in book "The Java Programming Language" by Ken Arnold and James
Gosling, calling of super.finalize() from finalize() is good practice of programming,
even if base class doesn’t define finalize() method. This makes class implementations
less dependent from each other.

3.3 Data flow

Jlint performs data flow analysis of Java byte code, calculating possible ranges of values
of expressions and local variables. For integer types, Jlint calculates minimal and maximal
value of expression and mask of possibly set bits. For object variables attribute null/not_
null is calculated, selecting variables which value can be null. When value of expression is
assigned to variable, these characteristics are copied to correspondent variable descriptor.
Jlint handles control transfer instruction in special way: saving, modifying, merging or
restoring context depending on type of instruction. Context in this consists of local variables
states (minimal, maximal values and mask) and state of top of the stack (for handling
?: instruction). Initially all local integer variable are considered to have minimum and
maximum properties equal to the range of correspondent type, and mask indicating that
all bits in this range can be set. Object variables attribute initially is set to not_null.
The same characteristics are always used for class components, because Jlint is not able to

Chapter 3: Bugs detected by Jlint 18

perform full data flow analysis (except checking for passing null value to formal parameter of
methods). Table below summarizes actions performed by Jlint for handling control transfer
instruction:

Instruction type Correspondent Java
construction

Action

Forward conditional jump IF statement Save current context. Modify cur-
rent context in assumption that
condition is false (no jump). Mod-
ify saved context in assumption
that condition is true (jump takes
place)

Forward unconditional
jump

Start of loop, jump
around ELSE branch of
IF

Save current context

Backward conditional jump Loop statement
condition

Modify context in assumption
that condition is false (no jump)

Backward unconditional
jump

Infinite loop Do nothing

Label of forward jump End of IF body or
SWITCH case

If previous instruction is no-pass
instruction (return, unconditional
jump, throw exception) then re-
store saved context, otherwise
merge current context with saved
context (set minimum property
of integer variable to minimum
of this property value in current
and saved contexts, maximum -
to maximum of values in two con-
texts, and mask as join of masks in
two context; for object variable -
mark it as "may contain null" if it
is marked so in one of contexts). If
label corresponds to switch state-
ment case, and switch expression
is single local variable, then up-
date properties of this variable by
setting its minimum and maxi-
mum values and mask to value of
case selector.

Chapter 3: Bugs detected by Jlint 19

Label of backward jump Start of loop body Reset properties of all variables
modified between this label and
backward jump instructions. Re-
set for integer variables means set-
ting minimum property to mini-
mum value of correspondent type,
... Reset for object variable clears
mark "may contain null".

3.3.1 Method name can be invoked with NULL as number
parameter and this parameter is used without check for null

Message category: null reference
Message code: null param

Formal parameter is used in the method without check for null (component of object is
accessed or method of this object is invoked), while this method can be invoked with null
as the value of this parameter (detected by global data flow analysis). Example:

class Node
protected Node next;
protected Node prev;
public void link(Node after)

next = after.next; // Value of ’after’ parameter can be null
prev = after;
after.next = next.prev = this;

class Container
public void insert(String key)

Node after = find(key);
if (after == null)

add(key);

Node n = new Node(key);
n.link(after); // after can be null

3.3.2 Value of referenced variable name may be NULL

Message category: null reference
Message code: null var

Variable is used in the method without check for null. Jlint detects that referenced
variable was previously assigned null value or was found to be null in one of control paths
in the method.

Jlint can produce this message in some situations, when value of variable can not actually
be null:

Chapter 3: Bugs detected by Jlint 20

public int[] create1nVector(int n)
int[] v = null;
if (n > 0)

v = new int[n];

for (int i = 0; i < n; i++)
v[i] = i+1; // message will be reported

return v;

3.3.3 NULL reference can be used

Message category: null reference
Message code: null ptr

Constant null is used as left operand of ’.’ operation:
public void printMessage(String msg)

(msg != null ? new Message(msg) : null).Print();

3.3.4 Zero operand for operation

Message category: zero operand
Message code: zero operand

One of operands of binary operation is zero. This message can be produced for sequence
of code like this:

int x = 0;
x += y;

3.3.5 Result of operation is always 0

Message category: zero result
Message code: zero result

Jlint detects that for given operands, operation always produces zero result. This can
be caused by overflow for arithmetic operations or by shifting all significant bits in shift
operations or clearing all bits by bit AND operation.

3.3.6 Shift with count relation than integer

Message category: domain
Message code: shift count

This message is reported when minimal value of shift count operand exceeds 31 for int
type and 63 for long type or maximal value of shift count operand is less than 0:

if (x > 32)
y >>= x; // Shift right with count greater than 32

Chapter 3: Bugs detected by Jlint 21

3.3.7 Shift count range [min,max] is out of domain

Message category: domain
Message code: shift count

Range of shift count operand is not within [0,31] for int type or [0,63] for long type.
Jlint doesn’t produce this message when distance between maximum and minimum values
of shift count is greater than 255. So this message will not be reported if shift count is just
variable of integer type:

public int foo(int x, int y)
x >>= y; // no message
x >>= 32 - (y & 31); // range of count is [1,32]

3.3.8 Range of expression value has no intersection with target
type domain

Message category: domain
Message code: conversion

Converted value is out of range of target type. This message can be reported not only
for explicit conversions, but also for implicit conversions generated by compiler:

int x = 100000;
short s = x; // will cause this message

3.3.9 Data can be lost as a result of truncation to type

Message category: truncation
Message code: truncation

This message is reported when significant bits can be lost as a result of conversion
from large integer type to smaller. Such conversions are always explicitly specified by
programmer, so Jlint tries to reduce number of reported messages caused by data truncation.
Example below shows when Jlint produces this message and when not:

public void foo(int x, long y)
short s = (short)x; // no message
char c = (char)x; // no message
byte b = (byte)y; // no message
b = (byte)(x & 0xff); // no message
b = (byte)c; // no message
c = (x & 0xffff); // no message
x = (int)(y >>> 32); // no message

b = (byte)(x >> 24); // truncation
s = (int)(x & 0xffff00); // truncation
x = (int)(y >>> 1); // truncation
s = (short)c; // truncation

Chapter 3: Bugs detected by Jlint 22

3.3.10 May be type cast is not correctly applied

Message category: overflow
Message code: overflow

Result of operation, which has good chance to cause overflow (multiplication, left shift), is
converted to long. As far as operation is performed with int operands, overflow can happen
before conversion. Overflow can be avoided by conversion of one of operation operands to
long, so operation will be performed with long operands. This message is produced not
only for explicit type conversion done by programmer, but also for implicit type conversions
performed by compiler:

public long multiply(int a, int b)
return a*b; // operands are multiplied as integers

// and then result will be converted to long

3.3.11 Comparison always produces the same result

Message category: redundant
Message code: same result

Using information about possible ranges of operands values, Jlint can make a conclusion,
that logical expression is always evaluated to the same value (true or false):

public void foo(int x)
if (x > 0)

...
if (x == 0) // always false

3.3.12 Compared operands can be equal only when both of them
are 0

Message category: redundant
Message code: disjoint mask

By comparing operands masks, Jlint makes a conclusion that operands of == or !=
operations can be equal only when both of them are zero:

public boolean foo(int x, int y)
return ((x & 1) == y*2); // will be true only for x=y=0

3.3.13 Reminder always equal to the first operand

Message category: redundant
Message code: redundant

This message is produced for % operation when right operand is either greater either less
than zero, and absolute value of left operand is less than absolute value of right operand.
In this case x % y == x or x % y == -x.

Chapter 3: Bugs detected by Jlint 23

3.3.14 Comparison of short with char

Message category: short char cmp
Message code: short char cmp

Comparison of short operand with char operand. As far as char type is unsigned, and
is converted to int by filling high half of the word with 0, and short type is signed and is
converted to int using sign extension, then symbols in range 0x8000...0xFFFF will not be
considered equal in such comparison:

boolean cmp()
short s = (short)0xabcd;
char c = (char)s;
return (c == s); // false

3.3.15 Compare strings as object references

Message category: string cmp
Message code: string cmp

String operands are compared by == or != operator. As far as == returns true only if
operands point to the same object, so it can return false for two strings with same contents.
The following function will return false in JDK1.1.5:

public boolean bug()
return Integer.toString(1) == Integer.toString(1);

3.3.16 Inequality comparison can be replaced with equality
comparison

Message category: weak cmp
Message code: weak cmp

This message is produced in situations when ranges of compared operands intersect only
in one point. So inequality comparison can be replaced with equality comparison. Such
message can be caused by error in program, when programmer has wrong assumption about
ranges of compared operands. But even if this inequality comparison is correct, replacing
it with equality comparison can make code more clear:

public void foo(char c, int i)
if (c <= 0) // is it a bug ?

if ((i & 1) > 0) // can be replaced with (i & 1) != 0
...

3.3.17 Switch case constant integer can’t be produced by switch
expression

Message category: incomp case
Message code: incomp case

Chapter 3: Bugs detected by Jlint 24

Constant in switch case is out of range of switch expression or has incompatible bit mask
with switch expression:

public void select(char ch, int i)
switch (ch)

case 1:
case 2:
case 3:

...
case 256: // constant is out of range of switch expression

switch (i & ~1)
case 0:
case 0xabcde:

...
case 1: // switch expression is always even

Chapter 4: Command line options 25

4 Command line options

Both programs (AntiC and Jlint) accept list of files separated by spaces in command
line. Wildcards are permitted. But unlike Unix, where wildcards are substituted by shell,
in Windows wildcards are handled by program itself and wildcards only in file names (not
in path directories) are allowed.

4.1 AntiC command line options

AntiC supports only one command option: "-java". By default it consider input files as
C/C++ source. There are very few differences (from AntiC point of view) between Java and
C++. The differences are mostly with set of tokens and Unicode character constants.

4.2 Jlint command line options

Jlint option can be placed in any position in command line and takes effect for verification
of all successive files in command line. Option always overrides previous occurrence of the
same option. Some options specify parameters of global analysis, which is performed after
loading of all files, so only the last occurrence of such options takes effect.

Options are always compared ignoring letters case and ’ ’ symbols. So the following two
strings specify the same option: -ShadowLocal and -shadow local.

All Jlint options are prefixed by ’-’ or ’+’. For options, which can be enabled or disabled,
’+’ means that option is enabled and ’-’ means that option is disabled. For options like
source or help there is no difference between ’-’ and ’+’.

‘-source path’
Specifies path to source files. It is necessary to specify this option when sources
and class files are located in different directories. For example: jlint -source
/usr/local/jdk1.1.1/src /usr/local/jdk1.1.1/lib/classes.zip.

‘-history file’
Specifies history file. Jlint will not repeatedly report messages, which are
present in history file. History file should be available for reading/writing and
is appended by new messages after each Jlint execution. This messages will not
be more reported in successive executions of Jlint (certainly if -history options
is present and specifies the same history file).

‘-max_shown_paths number’
Specifies number of different paths between two vertexes in class graph used
for detecting possible deadlocks (See Section 3.1 [Synchronization], page 8).
Default value of this parameter is 4. Increasing of this value can increase time
of verification for complex programs.

‘-help’ Output list of all options, including message categories. If option +verbose was
previously specified, then list of all messages is also printed.

‘(+-)verbose’
Switch on/off verbose mode. In verbose mode Jlint outputs more information
about process of verification: names of verified files, warnings about absence of
debugging information...

Chapter 4: Command line options 26

‘(+-)message category’
Enable or disable reporting of messages of specified category. It is possible
to disable top level category and then enable some sub-categories within this
category. And visa-versa it is possible to disable some specific categories within
top-level category. It is also possible to disable concrete message codes within
category. Table below describes full hierarchy of messages. By default all
categories are enabled.

‘(+-)all’ Enable/disable reporting of all messages. If -all is specified, it is possible to
enable reporting of some specific categories of messages. For example to output
only synchronization messages it is enough to specify "-all +synchronization".

‘(+-)message code’
Enable or disable reporting of concrete message. Message will be reported if its
category is enabled and message code is enabled. If there is only one message
code in the category, then names of the category and message code are the
same. By default all messages are enabled.

4.3 Jlint messages hierarchy

Chapter 5: How to build and use Jlint and AntiC 27

5 How to build and use Jlint and AntiC

Jlint is written on C++, using almost no operation system dependent code, so I hope it
will not a problem to compile it on any system with C++ compiler. Current release contains
makefile for Unix with gcc and for Windows with Microsoft Visual C++. In both cases it is
enough to execute "make" to build "antic" and "jlint" programs. Distributive for Windows
already includes executable files.

To use Jlint you need to compile first you Java sources to byte code. As far as format
of Java class is standard, you can use any available Java compiler. It is preferable to make
compiler to include debug information in compiled classes (line table and local variables
mapping). In this case Jlint messages will be more detailed. If your are using Sun javac
compiler, required option is -g. Most of compilers by default includes line table, but do not
generate local variable table. For example free Java compiler guavac can’t generate it at
all. Some compilers (like Sun’s javac) can’t generate line table if optimization is switch on.
If you specify -verbose option to Jlint, it will report when it can’t find line or local variable
table in the class file.

Now Jlint and AntiC produce message in Emacs format: "file:line: message text". So it
is possible to walk through these messages in Emacs if you start Jlint or AntiC as compiler.
You can change prefix MSG LOCATION PREFIX (defined in ‘types.hh’) from "%0s:%1d:
" to one recognized by your favourite editor or IDE. All Jlint messages are gathered in file
‘jlint.msg’, so you can easily change them (but recompilation is needed).

AntiC also includes in the message position in the line. All AntiC messages are produced
by function message_at(int line, int coln, char* msg), defined in file ‘antic.c’. You
can change format of reported messages by modifying this function.

Chapter 6: Release notes 28

6 Release notes

Jlint is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307, USA.

	jlint
	Introduction
	Bugs detected by AntiC
	Bugs in tokens
	Octal digit expected
	May be more than three octal digits are specified
	May be more than four hex digits are
	May be incorrect escape sequence
	Trigraph sequence inside string
	Multi-byte character constants are not portable
	May be 'l' is used instead of '1' at the end of integer constant

	Operator priorities
	May be wrong assumption about operators precedence
	May be wrong assumption about logical operators precedence
	May be wrong assumption about shift operator priority
	May be '=' used instead of '=='
	May be skipped parentheses around assign operator
	May be wrong assumption about bit operation priority

	Statement body
	May be wrong assumption about loop body
	May be wrong assumption about IF body
	May be wrong assumption about ELSE branch association
	Suspicious SWITCH without body
	Suspicious CASE/DEFAULT
	Possible miss of BREAK before CASE/DEFAULT

	Bugs detected by Jlint
	Synchronization
	Loop id: invocation of synchronized method name can cause deadlock
	Loop LoopId/PathId: invocation of method name forms the loop in class dependency graph
	Lock a is requested while holding lock b, with other thread holding a and requesting lock b
	Method wait() can be invoked with monitor of other object locked
	Call sequence to method name can cause deadlock in wait()
	Synchronized method name is overridden by non-synchronized method of derived class name
	Method name can be called from different threads and is not synchronized
	Field name of class
	Method name implementing 'Runnable' interface is not synchronized
	Value of lock name is changed outside synchronization or constructor
	Value of lock name is changed while (potentially) owning it
	Method name.wait() is called without synchronizing on name

	Inheritance
	Method name is not overridden by method with the same name of derived class name
	Component name in class name shadows one in base class name
	Local variable name shadows component of class name
	Method finalize() doesn't call super.finalize()

	Data flow
	Method name can be invoked with NULL as number parameter and this parameter is used without check for null
	Value of referenced variable name may be NULL
	NULL reference can be used
	Zero operand for operation
	Result of operation is always 0
	Shift with count relation than integer
	Shift count range [min,max] is out of domain
	Range of expression value has no intersection with target type domain
	Data can be lost as a result of truncation to type
	May be type cast is not correctly applied
	Comparison always produces the same result
	Compared operands can be equal only when both of them are 0
	Reminder always equal to the first operand
	Comparison of short with char
	Compare strings as object references
	Inequality comparison can be replaced with equality comparison
	Switch case constant integer can't be produced by switch expression

	Command line options
	AntiC command line options
	Jlint command line options
	Jlint messages hierarchy

	How to build and use Jlint and AntiC
	Release notes

